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The overall objective of the research program was to develop and test an
-m improved model for the process of molecular diffusion in turbulent reactive

flows. In application to turbulent combustion, a major shortcoming of ex-
isting models is that they are non-local in composition. A model has been
developed, based on the construction of a Euclidean minimum spanning tree
(EMST). This model is inspired by the mapping closure, and reduces to it
in the case of a single composition. In general, the model is asymptoticallf
local, and hence overcomes a major flaw in previous models. The model has been
tested for decaying scalars in isotropic turbulence and for a mean scalar
gradient.

Additionally, studies have been made of stochastic Lagranaian models for
turbulent reactive flows; and an exact expression has been obtained for the
probability density function of temperature (or other random quantities) in
stat 4 stically statinnary turbulence.
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1 INTRODUCTION

The treatment of molecular diffusion remains one of the major difficulties
to be overcome in models of turbulent combustion. One view of the overall
problem is obtained by considering how, at a given point within a turbu-
lent combustion device, the fluid composition changes with time. There are
three processes that cause this change: convection, reaction, and molecular
diffusion. In pdf methods the first two of these processes are treated ex-
actly, while the third-molecular diffusion-has to be modelled. Many other
theoretical and experimental studies lead to the same conclusion: the major
current issue in turbulent combustion is to understand and model the effects
of molecular diffusion.

A most promising recent advance is the development of mapping closures
(Chen et al. 1989, Kraichnan 1990, Pope 1991, Gao 1991). This is a new
formalism that yields "constant-free" pdf closures. In its initial application
to the marginal pdf of a scalac (Pope 1991) the accuracy of the mapping
closure has been remarkable.

For simple test cases, analytic solutions t. the mapping-closure equations
can be obtained. But for application to inhomogeneous flows of practical
importance, the closure needs to be implemented as a particle method. For a
single scalar, a particle-implementation has been developed by Pope (1991).
The major topic considered under the grant is the extension of these ideas to
the case of multiple scalars. The resulting EMST mixing model is described
in Section 2.1.

The process of molecular mixing is not, of course, independent of the
velocity field that is convecting and distorting the composition fields. In pdf
methods, there are separate stochastic models for the evolution of velocity
and composition following fluid particles. Two papers concerning these mod-
els and their interconnection have been written and are outlined in Section
2.2.

Finally, a new exact result has been obtained for the pdf of any stationary
random process, such as the temperature at a point in a turbulent combustion
device. This is described in Section 2.3.
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2 ACCOMPLISHMENTS

2.1 EMST Mixing Model

The term "mixing moder' refers to a turbulence sub-model that describes
the evolution of the pdf of composition. In the Lagrangian-pdf framework,
the mixing model specifies how the composition 0)(t) evolves following a fluid
particle. In one popular model (IEM) 4)(t) relaxes to the local mean value (0)
at a specified rate. In another class of models (particle-interaction models),
the composition of the n-th particle in an ensemble 0(n)(t) changes by an
exchange with another randomly selected particle (m, say, with composition

Such mixing models have been extensively examined for inert flows (e.g.
Pope 1982) and several shortcomings have been identified and are now well-
appreciated. More recently a different shortcoming-peculiar to reacting
flows--has been identified. Specifically, the physics of the problem shows
that mixing is local in composition space whereas the models cited above are
non-local. These ideas are now explained in more detail.

In the simplest case of Fickian diffusion with uniform diffusivity F, the
rate of change of composition 0 due to diffusion is simply rV 24). Since the
Laplacian is a local operator, one can think of 0 changing as a result of com-
position differences in an infinitesimal neighborhood of the point in physical
space (x). And since the composition field is mathematically smooth, the
compositions 4) at points in this neighborhood differ infinitesimally. Thus
mixing is local in both physical and composition spaces. In both of the mod-
els mentioned above, the composition 0)(n) (t) is influenced non-locally, either
by (,0) or by )(lm)(t).

The EMST mixing model, now described, is an asymptotically local
model, inspired by the mapping closure. For a single composition 0 it reduces
exactly to the amplitude mapping closure.

Consider first a single scalar O(x, t) in homogeneous turbulence. In a
particle method, the pdf of .0 is represented by an ensemble of N particles,
the n-th having the scalar value 0(')(t). r

For this problem, the mapping closure yields a fascinating particle method
(Pope 1991). Let the particles be ordered so that 0

0
0(1) (t) _0 (2)(t) _< ... _< O(N) (t). (1) .
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Then (according to the mapping closure) the particles evolve by a coupled
set of ode's

dOnt)= Bn+.1 [O.(n+l) -,~) + Bn1~ -1)_0W 2
dt2

where (for large N) the positive coefficients are

Bn+6= N 2A (nZ+2') , (3)

and A is a known function. (The coefficients Bi and BN+½ are zero, SO 0(o)

and O(N+1) can remain undefined.) A simple interpretation of Eq. (2) is that
O(n) (t) is drawn to its two neighbors at a rate proportional to its separation
from them. Note that as N tends to infinity, the difference between O(n) and
€(n*1) tends to zero. Hence the method is (asymptotically) local.

Consider now the gene.ýal case in which there are a compositions: in
a typical combustion problem (employing simplified kinetics) a may be 5.
Then the composition for the n-th particle is denoted by

O•n) (t) = I{On) (t), 02n) (t),...,,n o-"(t)}, (4)

and it can be regarded as a point in the a-dimensional composition space.
Thus the ensemble of N particles correspond to N points in a-space.

The concept of ordering-as used in Eq. (1)-is peculiar to one-space.
There is no direct equivalent in multi-dimensional spaces, and so a direct
extension of the model defined by Eq. (2) is not possible.

However, we have developed a model, inspired by Eq. (2), which is asymp-
totically local, and which reduces to Eq. (2) in the one-composition case. It
is based on Euclidean minimum spanning trees (EMST). An example of an
EMST (for a = 2, N = 400) is shown in Fig. 1. By definition, the EMST is
the set of edges joining the points, such that all points are connected, with
the N - 1 edges chosen (out of the N 2 possibilities) so that their total length
is minimal. By this construction, one or more neighbors are identified for
each particle, and hence evolution equations analogous to Eq. (2) can be
constructed.

This model has been implemented and tested in up to 10 dimensions.
Figures 2 and 3 show results for the test case of two decaying scalars in
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isotropic turbulence. The variance decays correctly, and (at least while the
variance is significant) the skewness and kurtosis are close to their Gaussian
values of zero and three. The cumulative distribution function (Fig. 3) is
acceptably close to Gaussian.

Figure 4 shows results from a more revealing test case in which there is
a mean scalar gradient. In this instance, the variance (and indeed all other
statistics) attains a stationary value. The results agree well with experiments
and DNS, and the skewness and kurtosis are again close to Gaussian values.

Research on this model is continuing. A reactive-flow test case is being
examined, and then the model will be incorporated in a Monte Carlo PDF
code.

2.2 Stochastic Lagrangian Models

The mixing model described in the previous Section fits in the general frame-
work of stochastic Lagrangian models. Such models for the velocity, composi-
tion and other properties following fluid particles can be used to effect closure
of the Lagrangian and Eulerian pdf equations. Hence they comprise a pdf
turbulence model applicable to turbulent reactive flows such as combustion.

During the reporting period, two substantial papers have been completed
on the topic of stochastic Lagrangian models. The first, Pope (1994a), is
a tutorial review of the approach. The second, Pope (1994b), explores the
relationship stochastic Lagrangian models and second-moment closures.

The major findings and contributions of the latter work are now summa-
rized. To every stochastic Lagrangian model there is a unique corresponding
second-moment closure. In terms of the second-order tensor that defines
a stochastic Lagrangian model, corresponding models are obtained for the
pressure-rate-of-strain and the triple-velocity correlations (that appear in the
Reynolds-stress equation) and for the pressure-scrambling term in the scalar
flux equation. There is advantage in obtaining second-moment closures via
this route, because the resulting models automatically guarantee realizability.

Some new stochastic Lagrangian models are presented that correspond
(either exactly or approximately) to popular Reynolds-stress models.
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2.3 Exact Expression for Stationary PDF

Central to this project, and indeed to many issues in turbulence, is the shape
adopted by the pdf's of different flow properties. In turbulent combustion
the importance of pdf's has been recognized for over twenty years. In the
theoretical turbulence community there is now much interest in the topic,
since pdf's are a natural diagnostic for intermittency.

Together with Emily Ching, we have obtained a surprisingly simple exact
expression for the pdf amplitude of any stationary random process (Pope &
Ching, 1993). Consider, for example, the temperature T(t) measured as a
function of time at a particular point in a turbulent reacting flow. Let X(t)
be the standardization of T(t), i.e.

X(t) - (T(t) - (T))/UT, (5)

where (T) and aT are the mean and standard deviation of T(t). The result
we have obtained for P(x), the pdf of X, is

_ C, fp' (X I X')dx,P(x) - (= 2  eX J (X2IX-) (6)

where C1 is a normalization constant, and (XkIx) denotes the expectation of
the second time derivative of X(t) conditional on X(t) = x.

In experiments, simulations and modelling, this formula provides a valu-
able connection between the pdf and the time derivatives of the signal. As
discussed by Pope & Ching (1993) it sheds light on the tail-shape of pdf's,
and it explains the success of a previous empirical expression due to Ching.
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Fig. 1: A Euclidean Minimum Spanning Tree (EMST) in two dimensions.
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turbulence. Temporal evolution of a) the variance b) the skewness and
c) the kurtosis of one scalar.
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c) the kurtosis for one of the scalars.


